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We study proximity effect in diffusive ferromagnet/normal-metal/superconductor junction with precessing
magnetization of the ferromagnet. We find that the odd-frequency pairing induced in the normal metal is
modified by spin pumping from the ferromagnet and hence can be tuned by changing the precessional fre-
quency. At the frequency corresponding to twice the superconducting gap, the odd-frequency pairing is
strongly enhanced. We find that the odd-frequency pairing can be dominant over the even-frequency pairing in
the normal metal by tuning the precessional frequency. This gives a clearcut signature of the odd-frequency
superconductivity observable by scanning-tunneling microscopy. According to the pairing symmetries in the
normal metal, we find a crossover from the gap to the peak structure in the tunneling conductance between the
normal metal and a scanning-tunneling microscope tip.
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I. INTRODUCTION

Generally, superconducting correlations can be even or
odd in frequency depending on their symmetry with respect
to the time axis. In accordance with the fermionic statistics,
even-frequency superconductors are characterized by the
spin-singlet even-parity or spin-triplet odd-parity pairing
states, while odd-frequency superconductors are grouped
into the spin-singlet odd-parity or spin-triplet even-parity
pairing states.

The possibility of the odd-frequency pairing state in a
uniform system was discussed in the literature1–5 although its
realization in bulk materials is still controversial. The odd-
frequency pairing state has recently been predicted in inho-
mogeneous superconducting systems.6–13 In diffusive
ferromagnet/superconductor junctions, odd-frequency pair-
ings emerge due to the broken symmetry in spin space.6,7 In
the dirty limit, only s-wave symmetry of the pair amplitude
can survive impurity scattering and hence triplet pairing in-
evitably belongs to the odd-frequency superconductivity,
which is also called odd triplet superconductivity.

Recently, the interplay between ferromagnetism and su-
perconductivity in ferromagnet/normal-metal/superconductor
�F/N/S� junctions has been studied using spin-active bound-
ary condition.14 Another recent progress is the study of the
Josephson effect in S/F/S junctions, where it has been estab-
lished that the ferromagnetic spin dynamics play a crucial
role.15–17 The F/N/S proximity effect in the presence of spin
dynamics, however, still remains to be fully understood.
Moreover, although the long-range proximity effect by the
generation of the odd-frequency triplet pairing has been ob-
served in recent experiments,18,19 no experiment has suc-
ceeded in controlling the magnitude of the odd-frequency
pairing to this date.

In this paper, we propose an experimental setup which
makes it possible to tune the magnitude of the odd-frequency
pairing. We study the proximity effect in diffusive F/N/S
junctions with precessing magnetization of the F layer. We
find that the odd-frequency pairing induced in the N layer is
modified by spin pumping from the F and therefore can be

tuned by changing the precessional frequency. At the reso-
nance frequency �i.e., twice the superconducting gap�, the
odd-frequency pairing is strongly enhanced. We find that the
odd-frequency pairing can be dominant over the even-
frequency pairing in the N by tuning the precessional fre-
quency. This is reflected in the tunneling conductance be-
tween the normal metal and the scanning-tunneling
microscope �STM� tip as a crossover from the gap to the
peak structure.

II. FORMULATION

We consider a diffusive F/N/S junction with precessing
magnetization of the F as shown in Fig. 1. The F/N interface
is located at x=0 while the N/S interface is at x=L. The spin
relaxation in the junction is assumed to be weak. Then, a
spin density is pumped into the N from F �Ref. 20� while the
superconductivity is induced in the N by the proximity ef-
fect. Therefore, we can study the interplay between ferro-
magnetism and superconductivity in the N layer.14

Let us take the time-dependent exchange field in the F to
be directed along

m�t� = �sin � cos �t,sin � sin �t,cos �� . �1�

Here, � is the precessional frequency around z axis and � is
a constant tilt angle. In the rotating frame, such precession
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FIG. 1. �Color online� Schematic of the model for a F/N/S junc-
tion with precessing magnetization of the F layer. A fictitious ex-
change field is dynamically induced in the N layer, which interplays
with the superconductivity induced by the proximity effect. The
electronic structure in the N layer can be studied by STM.
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can be viewed as a difference between spin-resolved chemi-
cal potentials along the z axis, and the noncollinear effective
Zeeman fields in N and F can generate a long-range proxim-
ity effect.16,21,22 To investigate the proximity effect, we use
the unitary transformation

ĝ�t,t�� → U†�t�ĝ�t,t��U�t�� , �2�

where U�t�=exp�−i�t�3 /2� transforms from the laboratory
into the spin-rotating frame. Then, the problem reduces to
the stationary one.16 In fact, we have U†�t�m�t� ·�U�t�
=m�0� ·��m ·�. Here, ĝ is the retarded component of the
quasiclassical Green’s function, which is 4�4 matrix in
spin � Nambu space. We parameterize ĝ as

ĝ = �3 � �g + g · �� + �1 � �fs + ft · �� , �3�

where g and fs are scalars, and g and ft are three-dimensional
vectors.23 �i and �i �i=0,1 ,2 ,3� are the unit and Pauli
matrices in the spin and Nambu spaces, respectively. �
= ��1 ,�2 ,�3� is the vector of Pauli matrices.

The Usadel equation in the N in this rotating frame has
the form16,24,25

D � �ĝ � ĝ� + �i��3 + i��/2��3 � �3, ĝ� = 0, �4�

where D is the diffusion constant and � is the quasiparticle
energy measured from the Fermi level. See Appendix A for
the derivation. To take into account the magnetic proximity
effect, we consider a low-transparency spin-active interface
at the F/N contact, with the boundary condition on the N side
given by14,26

2	B
ĝ�xĝ = ��3 + i	��m · �� � �3, ĝ� . �5�

Here, 	B=RbL /Rd
 and 	�=G� /GT, in terms of the interfa-
cial resistance parameter Rb, the diffusive resistance of the N
Rd, the N coherence length 
, the imaginary part of the mix-
ing conductance27 G�, and the interfacial tunneling conduc-
tance GT=1 /Rb. The mixing conductance describes the spin
rotation in the plane perpendicular to the magnetization axis
upon interfacial reflection. The magnetic proximity effect is
governed by 	�.14 We will for simplicity disregard the real
part of the mixing conductance and the spin dependence of
the F/N conductance, which should not affect our findings
qualitatively. We make use of the well-known Kupriyanov-
Lukichev boundary conditions28 for the N/S interface

− 2	B
ĝ�xĝ = �ĝS, ĝ� �6�

with the bulk Green’s functions ĝS. For simplicity, we as-
sume the same 	B parameter at both interfaces.

Focusing on the tunneling regime with weak supercon-
ducting correlations in N, we linearize the Usadel equation
with respect to the anomalous Green’s function in the N. The
linearized Usadel equation reads

D�x
2fs + 2i�fs − 2ift · h = 0,

D�x
2ft + 2i�ft − 2ifsh = 0 �7�

with h=−�z /2 and z= �0,0 ,1�. The general solution in the
N is thus

� fs

ft
� � �

fs

f1

0

f3

	 = �Aeik+x + A�e−ik+x��
1

0

0

− 1
	 + �Beik−x

+ B�e−ik−x��
1

0

0

1
	 + �Ceik0x + C�e−ik0x��

0

1

0

0
	 �8�

with k�=
2i�−��� /2� /D and k0=
−2i� /D. The coeffi-
cients A ,A� ,B ,B� ,C and C� are determined by the boundary
conditions. Here, f1 is the transverse triplet component,
which is long ranged at low energies, and f3 is the longitu-
dinal triplet component, which is short ranged, similarly to
the singlet component fs.

6 It follows from the boundary con-
ditions that the second component of ft is zero.

Linearizing the boundary conditions at the N/F interface,
we have

	B
�xfs = fs + i	�ft · m ,

	B
�xft = ft + i	�fsm . �9�

These boundary conditions show that the presence of fs gen-
erates the triplet components with ft �m as long as 	��0.
Similarly, the linearized boundary conditions at the N/S in-
terface have the form

	B
�xfs + gS
0fs + gS

3f3 = fS
0,

	B
�xft + gS
0ft + gS

3fsz = fS
3z . �10�

Here, the bulk Green’s functions in the S, gS and fS, are
given by gS= �gS

0�0+gS
3�3� � �3 and fS= �fS

0�0+ fS
3�3� � �1,

where �in a convenient gauge�

gS
0 =

1

2� − i�� + �/2�

2 − �� + �/2�2

+
− i�� − �/2�


2 − �� − �/2�2� ,

gS
3 =

1

2� − i�� + �/2�

2 − �� + �/2�2

−
− i�� − �/2�


2 − �� − �/2�2� ,

fS
0 =

1

2� 


2 − �� + �/2�2
+




2 − �� − �/2�2� ,

fS
3 =

1

2� 


2 − �� + �/2�2
−




2 − �� − �/2�2� . �11�

After the unilluminating manipulations to solve Eqs.
�8�–�10�, we obtain the desired solution of the Usadel equa-
tion. The explicit form of the solution is rather complicated
and is given in Appendix B.

In general, the tilt angle � is determined by solving the
Landau-Lifshitz-Gilbert equation

TAKEHITO YOKOYAMA AND YAROSLAV TSERKOVNYAK PHYSICAL REVIEW B 80, 104416 �2009�

104416-2



dm�t�
dt

= − 	m�t� � Heff�t� + �m�t� �
dm�t�

dt
, �12�

where 	 is the gyromagnetic ratio, Heff is the effective mag-
netic field, and � is the Gilbert damping constant. Driving
the ferromagnet by an applied transverse rotating magnetic
field hrf, in the presence of an effective static dc field Hdc, we
find a small transverse magnetic field in the rotating frame of
reference. This is disregarded in our analysis, assuming �
�1, so that ��hrf /�Hdc�hrf /Hdc at the ferromagnetic reso-
nance, which is usually the case in realistic ferromagnets. We
consider Hdc due to the internal demagnetization and crystal-
line anisotropy fields in the F. Then, the effective magnetic
field can be neglected outside of the F. However, even if we
take into account some Hdc outside of the F, our key findings
do not change qualitatively. We can also envision exciting
and tuning ferromagnetic resonance by spin torques �see,
e.g., Ref. 29� as well as controlling the resonance frequency
� by the microwave power rather than Hdc.

We note that the spin-pumping effect is enhanced close to
the ferromagnetic resonance, which should in practice be the
optimal driving regime for the magnetic dynamics. Notice
also that the tilt angle of the rotating magnetization � may in
general be time dependent. In this paper, we focus on the
regime when d ln � /dt� �� ,�2 /�i� so that the appropriate
nonequilibrium spin state is fully developed before �
changes appreciably. Here, 1 /�i is an effective spin-injection
rate proportional to the mixing conductance at the F/N
interface.30 In addition, the spin-relaxation rate is assumed to
satisfy 1 /�sf�� so that the spin memory is preserved during
a cycle of precession and 1 /�sf��2 /�i so that the developed
spin accumulation does not decay. We will, therefore, fix �
and disregard spin relaxation in the junction in the following.

Next, let us consider tunneling current between the N and
the STM tip. See Fig. 1. Below, we consider two cases: spin
relaxation in the STM tip is weak or strong, on the scale of
its characteristic spin-injection rate. Weak �strong� spin re-
laxation effectively leads to a state of equilibrium in the
STM tip, in the rotating �laboratory� frame of reference. To
realize the situation that the state of equilibrium is effectively
reached in the rotating frame of reference, the STM tip
should be spin-polarized by the fictitious field, which would
in practice require either connecting the precessing ferro-
magnet directly to the tip or using magnetized tip which
itself is precessing in synchronization. Experimentally, this
may be more difficult to realize than the strong spin-
relaxation regime in the STM tip. �Note, however, that a
spin-resolved STM technique has been recently
developed.31� One may furthermore think that the limit when
�� is problematic for the superconductor since the gap
should then be strongly suppressed. However, assuming
some spin relaxation in S, the out-of-equilibrium pumped
spins do not cause significant Cooper-pair depairing in the
superconductor while the effective spin relaxation in N is
weak so that the pumped spin distribution is unaffected in N.

Now, let us first consider the case of the STM tip with
weak spin relaxation. We define the 8�8 matrix Green’s
functions in STM and N, ǧSTM and ǧN, as

ǧSTM = ��3 ĝSTM
K

0 − �3
�, ǧN = �ĝN

R ĝN
K

0 ĝN
A � . �13�

Here, R ,K and A represent the retarded, Keldysh and ad-
vanced components, respectively. The current between the N
and the STM tip is given by

I � d� Tr��3�ǧSTM, ǧN�K� , �14�

where

�ǧSTM, ǧN�K = ĝSTM
K ĝN

A − ĝN
RĝSTM

K + �3ĝN
K + ĝN

K�3. �15�

Let us apply a bias voltage V to the STM tip so that we have

ĝSTM
K = �3�fSTM

0 + fSTM
3 �3� + �fSTM

0 + fSTM
3 �3��3

= 2fSTM
3 + 2fSTM

0 �3,

fSTM,�
0�3� = �tanh��� + eV + ��/2�/2T� + �− �tanh��� − eV

− ��/2�/2T��/2 �16�

with �=� for spins up and down, and ĝN
K =tanh�� /2T��ĝN

R

− ĝN
A�. Therefore, we obtain

Tr��3�gSTM,gN�K� = �
�

2fSTM,�
3 �gN,�

A − gN,�
R �

= − �
�

4fSTM,�
3 Re gN,�

R , �17�

and, hence, at zero temperature

dI/dV � �
�

�N��− eV − ��/2� + N��eV + ��/2�� . �18�

Here, N�=Re gN,�
R denotes the density of states for spin � in

the N. To calculate the spin-resolved density of states N�, we
can use the relation g=−fsft, which is obtained from the nor-
malization condition ĝ2=1 applied to the parametrization Eq.
�3�.

In the case of the STM tip with weak spin relaxation, the
state in the STM is equilibrated in the rotating frame of ref-
erence and we obtain the relevant results by setting �=0 in
Eqs. �16� and �18�. The tunneling conductance then coincides
exactly with the density of states.

III. RESULTS

In the numerical calculations, we introduce a small imagi-
nary part of the energy, �→�+ i�, to regularize singularities.
Physically, � captures an effective depairing rate for Cooper
pairs. We choose the following parameters: 	B=100, �
=� /12, L /
=10,  /ETh=0.1, and � /ETh=0.01. Here, ETh
=D /L2 is the Thouless energy. Typically, for L /
=10 and
ETh�0.01 meV.

A. Weak spin relaxation in the STM tip

We start by considering the case of weak spin relaxation
in the STM tip. We first discuss some limiting cases and give
qualitative picture of our main results. Below, we focus on
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the low-energy limit, i.e., �→0, where the superconductivity
is manifested most strongly. At �=0, the bulk Green’s func-
tions in the S are given by

gS
0 = 0, gS

3 =
− i�/2


2 − ��/2�2
, �19�

fS
0 =




2 − ��/2�2
, fS

3 = 0, �20�

for ��2 and

gS
0 =

�/2

��/2�2 − 2

, gS
3 = 0, �21�

fS
0 = 0, fS

3 =
i


��/2�2 − 2
, �22�

for ��2. In the limit of �→2, these Green’s functions
diverge and the proximity effect is resonantly enhanced as
seen from the boundary conditions at the N/S interfaces. Tak-
ing the limit 	�→� for the boundary condition at the F/N
interface, we have fs→0 and f1 sin �+ f3 cos �→0. The sin-
glet component vanishes while the triplet components can
remain finite for ��0, � /2 in this limit. Thus, we can ex-
pect that by tuning � close to 2 one can control the mag-
nitude of the odd-frequency superconductivity for suffi-
ciently large 	�.

Next, let us plot the anomalous Green’s functions using
Eq. �8�. Figure 2 shows anomalous Green’s functions at the
N/S interface �x=L� as a function of � /ETh with �a� 	�

=100 and �b� 	�=10. Note that at �=0, f1 and f3 are purely
imaginary while fs is a real number. We find that a resonant
peak appears at �=2. As seen in Fig. 2�a�, for ��2, the
singlet component dominates, while, for ��2, the triplet
component dominates. This can be understood by the fact
that for �→2−0+, fS

0 diverges while for �→2+0+, fS
3

diverges. Thus, one can control a crossover from the domi-

nant even to the dominant odd-frequency superconductivity
by changing �, which is tunable by the external magnetic
field. When 	� is reduced, the singlet component is enhanced
as shown in Fig. 2�b�. We also show the anomalous Green’s
functions at the F/N interface �x=0� as a function of � /ETh
in Fig. 2�c� for 	�=100 and Fig. 2�d� for 	�=10. A peak also
appears at �=2. Compared to the results at x=L, the long-
range triplet component f1 has a large magnitude, which is
controllable by tuning the frequency �.

To date, a hallmark of the odd-frequency pairing has been
considered to be the long-ranged proximity effect in the pres-
ence of magnetism.6 However, another aspect of this pairing
has been recently appreciated: The density of states in the
presence of the odd-frequency pairing is enhanced, acquiring
a zero-energy peak within the gap structure.8,21,32,33 Using
general relations for the conjugate Green’s functions,34 we

have that f̃ s���= fs
��−�� and f̃t���=−ft

��−��. Hence, we easily
obtain g2=1− �fs�0��2+ �ft�0��2 at �=0, from the standard nor-
malization condition ĝ2=1. Therefore, the density of states,
which is given by Re g, is enhanced by the generation of
odd-frequency pairing �ft� and suppressed by the presence of
the even-frequency pairing �fs� at �=0.

The density of states normalized by its normal-state value,
N=Re
1− �fs

2+ f1
2+ f3

2�, as a function of � /ETh is shown in
Fig. 3 setting 	�=100 at �a� x=L and �b� x=0. We find a
crossover from the gap to the peak structure in the density of
states with increasing � /ETh. This reflects a crossover from
the dominant even to the dominant odd-frequency supercon-
ductivity in the N, upon changing the precessional frequency.
Note that, as shown above, the density of states exactly co-
incides with the tunneling conductance between the N and
the STM tip, in the weak spin-relaxation regime of the STM
tip.

B. Strong spin relaxation in the STM tip

Here, we discuss the more realistic case with strong spin
relaxation in the STM tip so that the tip is equilibrated in the
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FIG. 2. �Color online� Anomalous Green’s functions as a func-
tion of � /ETh at the N/S interface �x=L� with �a� 	�=100 and �b�
	�=10 and at the F/N interface �x=0� with �c� 	�=100 and �d�
	�=10. Here, we set �=0. f1 and f3 are the odd-frequency and fs is
the even-frequency pairing amplitudes.
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FIG. 3. �Color online� The density of states normalized by its
normal-state value as a function of � /ETh with 	�=100 at �a� x
=L and �b� x=0.
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laboratory frame. Let us define �T as dI /dV normalized by
its normal-state value. Figure 4 shows �T as a function of
eV /ETh for 	�=100 at �a� x=L and �b� x=0. We see the gap
structure at �=0. For larger �, the zero-bias conductance
grows and a sharp zero-bias peak emerges at � /ETh=0.1.
This can be understood as follows: let us consider the term
N↑�eV+� /2� in Eq. �18�, for instance. Then, the argument
�−� /2 appearing in Eqs. �4� and �11� is effectively replaced
by eV while �+� /2 is replaced by eV+�. Similar replace-
ments should be made for other terms in Eq. �18�. Thus,
coherence peaks will appear at eV=��. Therefore, when
�=, a resonant peak appears at the zero bias. This can be
also attributed to the emergence of the odd-frequency pair-
ing, as shown in Sec. III A. Therefore, we find that even in
the case of the strong spin relaxation in the STM, we can
also find the evidence of the odd triplet superconductivity
�zero-bias peak� tuned by the precession frequency.

IV. CONCLUSIONS

We have studied the proximity effect in diffusive F/N/S
junctions with precessing magnetization of the F layer. We
found that a tunable odd-frequency pairing in the N is gov-
erned by spin correlations in the N that are induced by the
ferromagnetic precession. At the resonance frequency, �
→2, the odd-frequency pairing is strongly enhanced. We
unveiled that the odd-frequency pairing can be dominant
over the even-frequency pairing in the N by tuning the pre-
cessional frequency. This is manifested as the crossover from
the gap to the peak structure in the tunneling conductance
between the N and the STM tip, where we investigated two
regimes of the weak and strong spin relaxation in the STM
tip.

Our results can be experimentally accessible and provide
a way to amplify the odd triplet superconductivity using the
magnetization precession in the F/N/S junctions. These char-
acteristics should be observable by a scanning-tunneling mi-

croscope or other tunneling experiments and, hence, may
serve as a smoking gun to reveal the odd-frequency super-
conductivity.

In the tunneling experiment in PdNi/Nb junctions, the
crossover from the gap to the peak structure in the tunneling
conductance has been found.35 This would also reflect the
pairing symmetry in the ferromagnetic layer. In this experi-
ment, this crossover has been observed by using several
samples with different thickness of the ferromagnet. Our pro-
posal given in the present paper is experimentally easier
since it can be tested with one sample.

Recently, the F/N/S trilayer junctions have been fabri-
cated to study behavior of the superconducting phase
transition.36,37 Also, a ferromagnetic resonance experiment
has been performed in an Nb/permalloy proximity system.38

In the light of these advances, it appears realistic to verify
our predictions experimentally by using, e.g., permalloy/
Cu/Nb junctions. The predicted resonance frequency corre-
sponds to the �MHz range and is easily achievable by the
present-day experimental technique. It should be remarked,
however, that the required condition for the spin-flip relax-
ation rate, 1 /�sf��, is rather stringent in this low-frequency
limit, requiring low temperatures.
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APPENDIX A: DERIVATION OF THE USADEL EQUATION

Here, we present the derivation of the Usadel equation in
the presence of the effective Zeeman field. The matrix
Green’s function in particle-hole � spin space can be defined
as6

Ĝ = − i�
�TCa↑a↑

†� �TCa↑a↓
†� �TCa↑a↓� �TCa↑a↑�

�TCa↓a↑
†� �TCa↓a↓

†� �TCa↓a↓� �TCa↓a↑�
�TCa↓

†a↑
†� �TCa↓

†a↓
†� �TCa↓

†a↓� �TCa↓
†a↑�

�TCa↑
†a↑

†� �TCa↑
†a↓

†� �TCa↑
†a↓� �TCa↑

†a↑�
	 ,

�A1�

where TC is the time-ordering operator along the Keldysh
time contour. This basis is obtained from the conventional
basis

Ĝ = − i�
�TCa↑a↑

†� �TCa↑a↓
†� �TCa↑a↑� �TCa↑a↓�

�TCa↓a↑
†� �TCa↓a↓

†� �TCa↓a↑� �TCa↓a↓�
�TCa↑

†a↑
†� �TCa↑

†a↓
†� �TCa↑

†a↑� �TCa↑
†a↓�

�TCa↓
†a↑

†� �TCa↓
†a↓

†� �TCa↓
†a↑� �TCa↓

†a↓�
	 ,

�A2�

by the following transformation

Ĝ → UĜU† �A3�

with

/e V E

( )a

( )b

0 . 9 8

0 . 9 9

1

1 . 0 1

Ω / E T h = 0

Ω / E T h = 0 . 1

Ω / E T h = 0 . 2

- 0 . 4 - 0 . 2 0 0 . 2 0 . 4
0 . 9 9 5

1

1 . 0 0 5

Ω / E T h = 0

Ω / E T h = 0 . 1

Ω / E T h = 0 . 2

FIG. 4. �Color online� The normalized tunneling conductance as
a function of eV /ETh with 	�=100 at �a� x=L and �b� x=0.
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Û = �1 0

0 �1
� . �A4�

With the quasiclassical approximation, we obtain the quasi-

classical Green’s function ĝ from Ĝ in this basis.6

Then, the pair potential is transformed as

̂ = � 0 �2

��2 0
� = ��1 Re  − �2 Im � � �2, �A5�

→� 0 �2�1

��1�2 0
� = � 0 − i�3

i��3 0
� = ��2 Re 

+ �1 Im � � �3 �A6�

and also we have

�̂ = �� 0

0 �� � → �� 0

0 �1���1
�

= ��0 � �1,�0 � �2,�3 � �3� � Ŝ . �A7�

The Usadel equation is, therefore, transformed by Û as6

D � �ĝ � ĝ� + �i��3 − i�h · �̂� − ��1 Re  − �2 Im � � �2, ĝ�

= 0, �A8�

→D � �ĝ � ĝ� + �i��3 − i�h · Ŝ� − ��2 Re  + �1 Im �

� �3, ĝ� = 0. �A9�

Next, we consider the following unitary transformation:25

V = exp�i
�

4
�3 � �3�exp�− i

�

4
�3� , �A10�

such that

V�1V† = �1 � �3, V�2V† = �2 � �3,

V�2 � �3V† = �1, V�1 � �3V† = − �2 �A11�

employing the relation

ei�n·� = cos � + i sin �n · � �A12�

for an arbitrary unit vector n. The Usadel equation is finally
transformed by V as25

D � �ĝ � ĝ� + �i��3 − i�h · Ŝ� − ��2 Re  + �1 Im � � �3, ĝ�

= 0, �A13�

→D � �ĝ � ĝ� + �i��3 − i�h · �� � �3 − ��1 Re  − �2 Im �

� �0, ĝ� = 0. �A14�

This representation of the Usadel equation for the trans-
formed Green’s function has the convenience of the explicit
symmetry with respect to rotations of the effective Zeeman
field h.

Assuming that  is real, the equation for the f component
yields

D � �g � f + f � g̃� + 2i�f − i�fh · � + h · �f� = g̃ − g .

�A15�

Linearizing this equation with respect to superconducting
correlations, we find

D�2f + 2i�f − i�fh · � + h · �f� = − 2 . �A16�

Setting f = fs+ ft ·�,23 we have

D�2�fs + ft · �� + 2i��fs + ft · �� − i�2fsh · � + 2ft · h�

= − 2 , �A17�

giving finally

D�2fs + 2i�fs − 2ift · h = − 2 , �A18�

D�2ft + 2i�ft − 2ifsh = 0. �A19�

Here, ft and h are three-dimensional vectors. As shown in
Ref. 23, fs and ft �h are short ranged while ft�h is long
ranged, at low energies.

APPENDIX B: SOLUTION OF THE USADEL EQUATION

Solving Eqs. �8�–�10�, we obtain the solution of the Us-
adel equation as follows:

C =
− a3a4a7 − a1a6a8 + a1a4a10

a2a4a7 + a1a5a8 − a1a4a9
,

A = − �a2C + a3�/a1, B = − �a5C + a6�/a4, A� = b1A + b2,

B� = b3B + b4, and C� = b5C, where

a1 = 1 − i	B
k+ − i	� cos � + �1 + i	B
k+ − i	� cos ��b1,

a2 = i	��1 + b5�sin �/2,

a3 = �1 + i	B
k+ − i	� cos ��b2,

a4 = 1 − i	B
k− + i	� cos � + �1 + i	B
k− + i	� cos ��b3,

a5 = i	��1 + b5�sin �/2,

a6 = �1 + i	B
k− + i	� cos ��b4,

a7 = i	� sin ��1 + b1� ,

a8 = i	� sin ��1 + b3� ,

a9 = 1 − i	B
k0 + �1 + i	B
k0�b5,

a10 = i	� sin ��b2 + b4� �B1�

and

b1 = −
gS

0 − gS
3 + i	B
k+

gS
0 − gS

3 − i	B
k+

e2ik+L,
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b2 =
eik+LfS

−

gS
0 − gS

3 − i	B
k+

,

b3 = −
gS

0 + gS
3 + i	B
k−

gS
0 + gS

3 − i	B
k−

e2ik−L,

b4 =
eik−LfS

+

gS
0 + gS

3 − i	B
k−

,

b5 = −
gS

0 + i	B
k0

gS
0 − i	B
k0

e2ik0L,

with fS
�= �fS

0� fS
3� /2.
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